
1

Storage Jamming

John McDermott David Goldschlag
Naval Research Laboratory

Introduction

In the past, the most likely motive for attacks that modify data would have been financial
gain. The problem of fraud has been addressed by Clark and Wilson [2], by Sandhu and Jajo-
dia [13], and by others [8, 9]. However, changes in technology have made many organizations
so dependent on information systems that it is now possible to disrupt or degrade their opera-
tions by interfering with their supporting information systems [3]. When this disruption is ac-
complished by unauthorized modification of data we call it storage jamming.

Storage jamming is the malicious modification of stored data, done for the purpose of degrad-
ing or disrupting real-world operations that depend on the correctness of the data. We assume
the person initiating the malicious modification (frequently via a Trojan horse) does not re-
ceive any direct benefit, financial or otherwise, but rather is motivated by more indirect goals
such as improving the competitive position of his or her own organization. The target data
need not be data stored by a general purpose database system, it can be any values stored for
future reference: application data, system data (e.g. initialization files), linking data (index
structures, hot lists, routing tables), or metadata. In this sense, a file of electronic mail mes-
sages that have been saved for future reference is a fair target. We call the values introduced
into storage by the jammer bogus values. We call the values we meant to store authentic val-
ues. If a data item contains a bogus value, we say that the data item has been jammed. In or-
der to simplify our analysis of a very complex problem, we will exclude the possibility of
mistakes made by users or inadvertent flaws in software. (This does not mean that we exclude
from consideration conventional data integrity techniques that also have anti-jamming prop-
erties.)

There are many possibilities open to the storage jammer. The amount and variety of stored
data that is critical can be large. Other issues that significantly affect the problem include the
rate and extent of the malicious changes, the method used to compute plausible bogus values,
the target system architecture, and the security properties of the jamming agent. It is impor-
tant to understand the nature of possible jamming attacks in order to balance the cost of de-
fenses against the ease of making such an attack.

The main goal of this paper is to define storage jamming. We also discuss our work to date on
possible defenses against it; in order to make the case that there are solutions. In the next sec-
tion we discuss the nature of storage jamming including possible jamming strategies and vul-
nerability to jamming. The next two sections discuss a variety of anti-jamming techniques.
Some of these candidate techniques are based on previous work on security-oriented data in-
tegrity but are unsuitable for use against jamming attacks. We then discuss a particular kind
of anti-jamming mechanism called a detection object. The paper ends with a summary and
discussion of future work.

Storage Jamming

The jammer’s objective is to reduce the quality of stored data below a certain level, without
being detected. Unlike conventional jamming of sensor and communication systems, we pre-

2

sume that it is relatively easy to stop the jamming once it is detected1. If the jammer does not
care if the jamming is detected then we are probably talking about a denial of service attack
rather than jamming.

We describe a jammer by the conditions it uses to choose a data item to jam and the rules for
determining the bogus value to be written.

Example 1

A simple random jammer might be described by the two conditions
1. jam(storage-block) = storage-block exclusive-or jamming-block-value
2. if there is a storage block at disk-address[X] then disk-address[X] :=

jam(disk-address[X])

where X is a random variable defined on the disk address space of the target system and jam-
ming-block-value is a constant bit string the same size as a storage block. ❏

Example 2

A high level jammer might use conditions better described via SQL
update emp set sal = sal + x where job = ‘mathematician’;

In this case the data items are chosen by the where clause and the set clause to choose records
in the emp table whenever emp.job is mathematician. The set clause determines the bogus
value of salary to be current salary plus a random value. ❏

Jamming Strategies

It is helpful to characterize storage jamming in terms of the possible strategies. There are
many possible characteristics, we consider eleven of them here:

Persistence Of Bogus Values

The unauthorized changes can be persistent or the jammer can restore the changed values af-
ter an arbitrary length of time. A useful variation of this would be to save deleted objects or
values and reintroduce them at a later time. In electronic warfare terminology this would be a
form of repeat-back jamming. Temporary bogus values may be harder to detect but may still
be read by critical applications or system programs.

Security Attributes Of The Jamming Program

The jamming may be done by an authorized program or by an unauthorized program. If it is
done by an authorized program it may be done as part of an authorized invocation, i.e the pro-
gram simply writes incorrect values, or the jammer may be able to cause an unauthorized in-
vocation of a legitimate application.

Target System Structure.

Target systems can vary in structure from unstructured legacy systems to modern, well-struc-
tured systems. Since poorly structured systems are hard to understand, we expect it will be
harder to determine if a poorly structured system is being jammed. The modularity and en-
capsulation in a well-structured system isolate the effects of bogus data to a single part of the

1. We believe that there are certain kinds of mission critical legacy systems where jamming
could not be stopped easily. For instance, if the system cannot be reinitialized in a convenient
way, then the problem of stopping the jamming becomes much more difficult.

3

system. They also make it easier to determine that the source of the system error was bogus
data rather than an unusual interaction of program logic.

Means Of Choosing Bogus Values

The jammer can adopt a number of basic algorithms for generating the data to write. The bo-
gus values can be chosen arbitrarily, randomly, by interpolation, by replay, by permutation,
etc. Arbitrary choices may be easy to detect, but can be performed by small programs that
may be easier to insert into a system.

Means of Choosing Target Data Items

The jammer can select targets randomly, via some selection criteria, or by simply piggyback-
ing on an application program. This last approach lets the application chose the target for the
jammer. We have found it helpful to characterize the selection in terms of a condition, as in
examples 1 and 2 above.

Class Of Target Data

As we said in the introduction, the data can be application data, linkage data, metadata, or
system data. A more important classification of target data is the level of abstraction. For ex-
ample, the units of target data (data items) could be data in a relational database or they
could be disk blocks in the nodes of a B+tree. Another important classification of target data is
the size or granularity of the target data items. The jammer could target sets or lists of data,
or select components of a data item, at the same level of abstraction.

Rate Of Change In Target Data

If there are many updates to the data, then jamming may be easier. There will be more oppor-
tunities and more checks will be required to find the jamming.

Rate Of Jamming

 The rate at which changes are made is significant. A jammer may be designed to jam as fast
as possible without being detected, with the expectation that the jammer will only be trig-
gered at a critical moment. Alternatively, the jammer may run continuously and make chang-
es infrequently.

The rate of jamming can be quantified, at a given level of abstraction, in terms of the number
of data items jammed per state transition. One way to do this is view each high-level com-
mand as the input causing a state transition. Note that we include all state transitions, in-
cluding those that only read data. For example, if we have 100 commands processed, 5 of
which jam, 5 of which are authentic updates and the remaining 90 are read-only commands,
then the rate of jamming is 0.5 data items per transition.

Extent Of Jamming

A slow jammer can still do much damage by using a cumulative strategy of jamming slowly
but widely, i.e. ultimately change every value stored in a database. This type of jamming is
usually called barrage jamming. On the other hand, a jammer can hope to escape detection
but still disrupt operations by only modifying a critical subset of the stored data. This kind of
jamming is called spot jamming.

The extent of jamming can be quantified, at a given level of abstraction, in terms of the num-
ber of data items jammed in a given state. For example, if we have 10000 data items in state s
and 300 have been jammed, then the extent of jamming is 3% of state s. This notion of extent

4

is dependent on the given level of abstraction and the condition used by the jammer to select
targets.

Extent is an important issue for the storage jammer. If storage jamming is continuous, then at
some point all of the data targeted by the jammer will be jammed. We assume that at some
point before the extent of jamming reaches 100% the presence of the jammer will be detected
by direct inspection by the users. For this reason, we expect the jammer will stop before such
a point is reached. The jammer can then wait until normal computations change the bogus
values into authentic values and then start jamming again.

Adaptability Of The Jammer

An enemy may hope to do more damage by having the jamming software changing its strate-
gy. This may be a simple adaptation, such as changing the constraints that are checked when
generating bogus values. It may be more complex, trying to adapt to detection mechanisms
that might be present. As we will see later, it may be necessary to prevent the jammer from
reading the data or code of the detection process, in order to frustrate this adaptability.

Means Of Introducing The Jammer

Security breaches accomplished via a network connection are currently of great interest and
jamming software could certainly be introduced that way. Unfortunately, network intrusions
are not the only way that jamming software could be introduced. They could be installed dur-
ing software development, or installed separately after an information system is deployed. In
most cases, we assume that the human who introduces the jamming software will not remain
close to, or be associated with the system under attack. However, one viable strategy is to
have a human there to help the jamming software. If the situation is such that a jamming
agent could be reinstalled easily or assisted by a human, then the jamming would be particu-
larly difficult to stop. This possibility may be a practical issue for large mission-critical legacy
systems. These systems often cannot be shut down for maintenance and can be sensitive to
small changes to seemingly unrelated data or programs. Finally, a jammer may be introduced
via firmware. It would be more difficult to check firmware for malicious code than to check
software that is stored in executable files.

Vulnerability to Jamming

A system’s vulnerability to electronic warfare is often characterized in terms of interceptibili-
ty, accessibility, and susceptibility. Interceptibility is a measure of the ease with which an ene-
my can determine the existence, function, and location of a system. Accessibility is a measure
of the ease with which an enemy can reach a system with an effective electronic warfare at-
tack. Susceptibility is a measure of system properties that determines the effect of attacks on
the system’s performance. In this paper we are primarily concerned with susceptibility rather
than accessibility or interceptibility.

Performance criteria for measuring susceptibility can include
1. mission success rate: the rate at which activities supported by the system succeed,
2. query error rate: the rate at which queries are not processed according to the sys-

tem data model, database design, and the non-bogus portion of the system history,
3. record error rate: the rate at which erroneous records, object instances, etc., occur

in storage,
4. field error rate: the rate at which erroneous fields of a record, attributes of an object,

5

etc., occur in storage, and
5. bit error rate: the rate at which erroneous bits occur in the representation of data.

Another important criteria is detection of jamming. If the jamming is detected, then we may
often assume that it will cease to be effective. So a system that allows easy detection of jam-
ming may not be very susceptible to it, even though the system has no real way of preventing
or tolerating the jamming that may occur before detection.

Reducing Vulnerability to Jamming

Fortunately, there are some general software and system engineering practices that can re-
duce a system’s vulnerability to storage jamming. Many of these practices should be followed
in developing the software and firmware of critical systems.

1. The system should be well-structured. That is, it should be modular, layered, and
encapsulate its data. Departures from this well-structuredness may be necessary
for other reasons, but the likelihood of successful jamming is increased.

2. The system data should be designed. That is, there should be an explicit specifica-
tion of the relationships between data items, their structure, and the operations
that can be performed on them. Identification of data integrity constraints or in-
variants is a critical part of this and makes it easier to discover storage jamming
that may be taking place.

3. The system behavior should be specified. This seems obvious, but is not always fol-
lowed in practice. If the behavior is unspecified, then jamming is harder to detect.

4. Major state transitions of the system should be transactional. That is, they should
have the transaction properties of atomicity, isolation, consistency, and durability
[5].

5. Commercial off-the-shelf data management products, such as database systems,
should be used for data storage instead of application-specific files. The transaction
processing, encapsulation, and integrity provided by these systems makes storage
jamming more difficult.

6. Fault tolerance techniques such as checksums, backup and recovery mechanisms,
and redundancy may be used to increase the difficulty of jamming data.

7. Computer security techniques such as access control, audit, and identification and
authentication may be used to increase the difficulty of jamming data.

These practices can reduce vulnerability to jamming, but they do not really address the prob-
lem. What we really can say about these engineering practices is that a failure to follow them
may make it impossible to protect a mission critical system from storage jamming. These
measures are just a starting point for dealing with the problem. A more effective way to re-
duce vulnerability to storage jamming is to adopt specific anti-jamming defenses.

Anti-Jamming

Defenses themselves can be either mechanisms: actual software or hardware constructs
present in the protected system, or measures: practices that are followed outside the protected
system, e.g. by people. An example mechanism would be a audit tool that could check integri-
ty constraints and determine that some values in storage were not consistent1. An example

1. Even though verification tools are automated systems, we do not consider them mecha-
nisms because they do not execute at the same time as the system they protect.

6

measure would be a blind buy of COTS to reduced the likelihood of malicious code in a critical
system. The final defense is likely to be a combination of mechanisms and measures.

Anti-jamming techniques may be intended to either prevent, tolerate, or detect jamming. One
of the most important combinations of anti-jamming measures and mechanisms is a set of
backup and restore facilities that can remove the effects of jamming. Unfortunately, backup
and restore facilities do not come into play until the jamming has happened. Important poten-
tial prevention mechanisms include access control and type enforcement. Both can limit the
extent of the jamming by confining it within a domain, but do not completely prevent it. Since
COTS applications are generally used in multiple domains, these domain-based mechanisms
could allow jamming to take place in every domain that used the COTS application. Impor-
tant potential toleration mechanisms include error correcting codes available from communi-
cation theory that potentially would allow a system to tolerate jamming. Unfortunately, these
codes are applied to low-level data representation schemes and provide no tolerance of jam-
ming via an agent that manipulates data at a high level of abstraction, e.g. via an SQL state-
ment. It is not clear that these encoding schemes would extend to abstract high-level data.
System development, administration, and maintenance measures that limit the introduction
of malicious code are promising prevention measures, but difficult to apply in practice. Detec-
tion mechanisms and measures are less well understood, but seem to offer more promise. This
promise in part stems from the fundamental nature of storage jamming: it is simple to stop
the jamming once it is detected.

Anti-jamming via Partial Correctness1

There are several security-oriented data integrity approaches that do offer more promise: the
Clark-Wilson model [2], Sandhu’s transaction control expressions [12], the assured pipeline of
Boebert and Kain [1], and the extended trusted path of Wiseman [16, 17]. None of these ap-
proaches, with the possible exception of the extended trusted path, was intended to deal with
jamming. As we will see, they do make things harder for the jammer. Unfortunately, in sys-
tems that must use COTS or unverified software, they don’t really provide significant protec-
tion against more than casual jamming attempts. This is not a shortcoming, none of these
approaches was intended to defend against data jamming and, as we shall see later, jamming
defenses do not necessarily provide the protection that can be achieved with these techniques.
On a practical level, their purposes are orthogonal.

Clark-Wilson Well-formed Transactions

The familiar Clark-Wilson integrity model would appear to be sufficient to frustrate all but
the most sophisticated of jamming attacks. But this is not the case. Implementation of an in-
tegrity policy based on well-formed transactions depends on having high-assurance trusted
code (i.e. non-COTS, expensive, and difficult to produce) for every transaction. As Sandhu and
Jajodia point out, in practice the trustworthiness of such transactions can vary [13]. The
Clark-Wilson model is vague on what it means for every transaction in a system to be certified
and on what it means for constrained data items to be protected from all other programs in a
system. If less than high-assurance is provided for both the transactions and the unspecified

1. We ask the reader not to be diverted by questions regarding the nature of correctness
proofs. We use the term in its broadest sense: that something much more rigorous and re-
source consuming than conventional software engineering is required. Because it is so easily
detected, we consider nontermination to be an ineffective storage jamming technique.

7

mechanism that protects constrained data items from uncontrolled modification, then the
jammer has relatively little difficulty in succeeding. Another problem with Clark-Wilson is
that the model is designed to prevent fraud. Fraud requires a human recipient to cooperate
with a Trojan horse or other malicious software. This human must be part of the system to re-
ceive assets from the system. On the other hand, jamming does not transfer assets and the en-
emy need not be part of the system under attack.

Both Clark and Wilson and Sandhu and Jajodia emphasize that well-formed transactions
should take consistent database states to consistent database states. Although this could be
sufficient for the more likely case of fraud, it is not always sufficient to prevent storage jam-
ming. In that situation, the jamming Trojan horse can insert or update data with values that
satisfy all transaction constraints, but are not authentic, i.e. they were not input to the sys-
tem through its interface for the purpose of storing information about the real world. If the
Trojan horse slips through a weak certification process into a Clark-Wilson transformation
procedure, then its bogus data is also a valid Clark-Wilson constrained data item that would
pass all checks administered by an integrity verification procedure. As Wiseman describes the
problem in [17], the data is valid but not appropriate.

Example 3

We will borrow Wiseman’s example of aircraft altitude [17] to make the problem clearer. Wise-
man discusses an air traffic control database where civilian aircraft altitude must be an inte-
ger between 0 and 60000 feet to be a valid data state. If flight PA73’s en route altitude is
stored in the database as 10000 feet but PA73 is actually at 30000 feet, the data state is inap-
propriate since it is not the altitude we wished to have recorded, but clearly so, since commer-
cial airlines do not operate at such low altitudes en route. Suppose that a radar sensor stores
the correct altitude, 30000 feet, in the database via a valid Clark-Wilson transformation pro-
cedure, but a Trojan horse in the database system modifies PA73’s altitude to be stored as
32000 feet. Air traffic controllers in a busy situation might not take any action if flight BA282,
actual altitude 30000 feet, bogus altitude 28000 feet, was on a track that passed “directly un-
der” flight PA73. They might even advise the pilots of PA73 to look for BA282 passing under
them. We expect that other precautions, especially the pilots themselves, would prevent a ca-
tastrophe. However, the operations of both airlines and the air traffic control system would be
degraded. ❏

Example 3 shows us that Clark-Wilson models will not prevent storage jamming unless every
transformation procedure, integrity validation procedure, and underlying system procedure is
proven to be partially correct. This must be so of every version of a procedure, not just the ini-
tial versions. Further measures must be applied to all software to ensure that it is not modi-
fied during maintenance or upgrades.

Well-formed Transactions Under Transaction Control Expressions

A more promising mechanism for preventing jamming is the transaction control expression of
Sandhu [12]. As described, transaction control expressions encounter the same difficulties
with assurance and Trojan horses as Clark-Wilson systems, but to a lesser degree. When a
Clark-Wilson transformation procedure acts, it acts within a single domain. Transaction con-
trol expressions can be made to act over multiple domains. In some cases this might require
the jamming Trojan horse to operate in multiple domains or more likely, multiple Trojan hors-
es would have to cooperate. A further complication for the jammer is the human approval re-
quired by transaction control expressions. This requires more care on the part of the jamming

8

software. We conjecture that a transaction control expression system would be harder to jam
than a Clark-Wilson system, but the difficulties discussed above still remain. The most signif-
icant of these is that jamming is not necessarily directed against corporate assets that are re-
corded as dollar amounts (or can be mapped to dollar amounts). Jamming could be directed
against map image data, object code, CAD data, sales forecasts, scheduling data, oil well logs,
records of electronic signals, etc. Determining the correctness of such data by brief human in-
spection is problematic.

Assured Pipelines and Extended Trusted Paths

An alternative view of the integrity problem is to look at the flow of data and protect it from
modification. If malicious software is unable to interpose itself into this flow, then the integri-
ty of the data is preserved across the flow.

Assured Pipelines

Boebert and Kain proposed an integrity mechanism called an assured pipeline [1]. An assured
pipeline is a transforming subsystem that must be encountered by a specific data flow. The ex-
amples given concern labeling or encryption of data just prior to output. An assured pipeline
has three properties:

1. The security-relevant subsystem cannot be bypassed.
2. Transforms made by the pipeline cannot be undone or modified.
3. Transforms made by the pipeline itself are correct.

The example given for a trusted pipeline is protection of output. This is a special case that
does not flow data into a store. Stored data is not protected by an assured pipeline, only data
under processing. One difficulty is that property 2 is very difficult to ensure for stored data,
particularly when the data is shared. Other measures or mechanisms are required to prevent
the stored data from being modified by software outside the pipeline. Once again, we find that
assured pipelines are only effective if all of the software that might be able to modify stored
data is shown to be partially correct.

We also encounter difficulty when the components of the assured pipeline are large and com-
plex, e.g. database system software. This makes it difficult to achieve property 3 of an assured
pipeline.

Extended Trusted Paths

Wiseman [17] proposed the use of an extended trusted path, as exemplified by the SMITE sys-
tem [16]. The SMITE trusted path is “all [of the] software which needs to be executed in order
for the wishes of the human user to be invoked.” Software on the extended trusted path is
shown to be totally correct (and presumably kept that way). If we could support the extended
trusted path with some kind of strong fine-grained domain protection, such as type enforce-
ment, we could exclude all sources of jamming via the trusted path. In systems where this is
possible, we think jamming would be extremely difficult.

Alternatives to Partial Correctness

The point of the preceding discussion is that four different potential anti-jamming mecha-
nisms lead us to the same condition, namely that we must expect everything to be partially
correct. But commercial off-the-shelf software or low-assurance customized applications are
the order of the day. Older (legacy) systems are perhaps very-low-assurance systems because
of their poor structure and thus even less likely to be protected by any of the mechanisms dis-
cussed so far. We conjecture that partial correctness will never be provided for the entire path

9

followed by information from input to output, for the entire life of a system. Instead, at best
we can assume that some small subsystem is sufficiently correct to defend against jamming.

As we have already shown, reference monitors that check accesses are not very effective
against storage jamming. A successful mechanism will probably not be based on directly on
cryptography either. Extensive use of cryptography would defeat the purpose of many inter-
nal data structures, and might not be feasible with off-the-shelf applications. Low level en-
cryption engines would not provide protection against jamming at a high level of abstraction,
e.g. via the methods of an object-oriented application program.

One alternative that we will leave to another paper is the possibility of having multiple ver-
sions of the software developed by separate teams. Each version of the software would vote for
or compare the values it intended to store. In principle, the trusted parts of such a mechanism
would be a trusted input multiplexer, a trusted comparison or voting mechanism, and a trust-
ed output demultiplexer. Although this kind of n-version programming has been shown to be
of limited use in preventing unintentional flaws, it would be a different matter to use it to pre-
vent misbehavior via malicious software. Presumably, the likelihood of compromising two or
more development teams in a way that allows coordination between the malicious compo-
nents is very small.

Anti-jamming via Detection Mechanisms

The alternative mechanisms we propose here would be background systems that detect jam-
ming in a timely fashion. The alternatives are based on data architecture; the strategy is to
arrange the data storage in such a way that jamming changes are easily detected. The three
mechanisms we have identified so far are specialized integrity constraints, multi-process
multi-domain transactions, and detection objects.

Specialized data integrity constraints can simplify detection because the detection software
could check them efficiently but the jammer would have some difficulty in computing plausi-
ble bogus values that satisfied them. Multi-process multi-domain transactions extend this
concept by structuring updates, deletes, etc. in such a way that no single process could deter-
mine plausible bogus values. Finally, detection objects are data structures that appear to be
part of an application, but are not used. If these objects are changed, then there is a high
probability that the change was made by a jammer.

Detection Objects

A detection object is an abstract mechanism that is intended to detect the actions of malicious
software that jams storage. It overcomes the difficulty of checking the computation performed
by a program by always remaining in a predictable state. If the detection object is not in its
proper, predictable state, then it was probably modified by a jammer. We call the data items
that are intended to store legitimate data, i.e. not detection objects, protected data items. Pro-
tected data items and detection objects are defined in terms of jammers that might target
them. Detection objects satisfy two properties

1. Detection objects are indistinguishable to the jammer from their corresponding
protected data items, that is, they satisfy the same condition as the jammer. Call
this condition indistinguishability.

2. The only legitimate process that modifies detection objects is the jamming detec-
tion process. Call this condition sensitivity.

10

Example 4

If we wished to protect the aircraft altitude records of Example 3, we could insert records for
flights that did not exist, for example flight QQ99 altitude 28000. The detection process would
have internal storage that it could compare and test for the presence of the QQ99 record and
its “correct” altitude of 28000. Since the altitude value is precomputed, and no radar sensor
report will ever make an authentic update to QQ99, any change to it must be a bogus update.
❏

If a detection process inserts enough detection objects into the storage structures of an infor-
mation system, an active jammer will eventually jam one of the detection objects and be de-
tected. A simple model of this can be constructed if we assume that the jammer is equally
likely to jam any of the potential targets, protected data items or detection objects. Suppose
we include enough detection objects to make them be 1% of the total storage. This gives a
probability p of jamming a protection object as p = 0.01. We can then represent the continued
jamming as a binomial distribution with n jamming attempts as trials and the i successes as
jamming of detection objects. We have the binomial distribution function

with X being the number of jamming changes made to detection objects. With 1% of the total
storage being detection objects, the probability of detecting the jammer after 300 changes is
0.95, and 0.63 after only 100 changes. If the percentage of detection objects is raised to 2%,
then the probability of detection becomes 0.95 after only 150 changes are made. From this we
see that a moderately sized set of data, say 10,000 storage objects, is efficiently protected by
detection objects. With 2% of the members as detection objects, our example data set has 9800
protected data items and we have a 95% chance of detecting the jammer after less than 150 of
the protected data items have been jammed1. On the other hand, if we have only 100 objects
in the data set then the entire set could be compromised with only a 63% chance that the de-
tection objects would reveal the jamming. The answer in this case (small sets of data) is to use
a much higher proportion of detection objects. If we add 100 detection objects to protect a set
of 100 objects, then the probability of jamming a detection object is one-half. This gives us a
97% chance of detecting the jamming after only five data items have been changed. The re-
duced efficiency is tolerable for smaller sets.

Detection objects only protect the sets of data to which they correspond. For example, if there
are two databases aircraft tracks and flight plans on a system, with detection objects inserted
into database aircraft tracks but not database flight plan, and a jammer only modifies data-
base flight plan, then the jamming will not be detected. The exact meaning of “correspond” is
not straightforward. It is difficult to assert that a given set of protection objects “protects” a
specific set. We might say that a detection object y protects a set P of data items if y is a mem-
ber of P. However, the jammer might only be designed to select a subset of P. If we call J the
set of all data items that could potentially be modified by a given jammer j and D the set of all
detection objects, then the set Dj is the set of all detection objects that are also in J, that is

1. In more complex models, we also need to allow for latency in the detection process. A
change to a detection object may not be discovered as soon as the jammer makes the change.

pk(1- p)n-kn
k()Σ

0≤k≤i

P{X ≤ i} =

11

Dj = { x | x ∈J and x ∈D }; in our binomial distribution example Dj contained 200 detection ob-
jects. Likewise Pj is the set of all protected data items that are in J, that is, Pj = { x|x ∈J and
x ∉ D }; in our example Pj contained 9800 protected data items. If Dj is nonempty then we can
say that Dj protects Pj against jammer j. So we see that detection objects protect data items
against specific jammers that target both those data items and some of the detection objects.
The problem of exactly specifying the set of all jammers that might be detected by a given set
of detection objects is a difficult one and beyond the goals of this paper. (It is related to the set
cover problem which is NP-complete.)

Preserving Indistinguishability and Sensitivity

Our discussion up to this point has little significance unless we can implement detection ob-
jects that preserve indistinguishability and sensitivity. We can implement plausibly indistin-
guishable detection objects by using the types, schema, class definitions, etc. of the data items
we intend to protect. We can further preserve indistinguishability by storing plausible values
in the detection objects. The conditions that a jammer may select on are not limited to stored
values from a single system state. Other attributes may be used: for example time of last up-
date, a pointer value in the representation of the data (e.g. jam all linked list entries where
the link value is odd), and data item names (e.g. jam all files whose names begin with the let-
ter Q). The jammer may also look at more than one state, in order to jam only those data
items that change rapidly. The closest approximation to complete indistinguishability results
when we create detection objects with values of every attribute chosen using the same distri-
bution as the corresponding values in the protected objects. 1 In practical cases, we can esti-
mate the distributions, since practical jammers that could detect flaws in our estimated
distributions would be both difficult to write and also relatively large programs. We consider
this latter characteristic to be undesirable (from the malefactor’s perspective) in malicious
software because it significantly increases the likelihood that the malicious software will be
detected for some reason other than modifying a detection object.

Preserving sensitivity can be difficult and can conflict with indistinguishability. If applica-
tions are to leave detection objects alone, then there must be some means for the applications
to distinguish the detection objects. There are two risks here: first, if such an attribute is in
use, the jammer may be able to discover it; second, the jammer may be a Trojan horse in an
application and may use the application logic to bypass the detection objects, without discov-
ering what the distinguishing attribute is.

Commingled-Object Detection

One alternative strategy for preserving sensitivity is not to have a distinguishing attribute,
that is, only the detection process will be able to determine if a given data item is in fact a de-
tection object. With this approach, the detection process installs the detection objects in the
data structures of the protected system and records some attribute of the installed object
(such as an address) that the detection process can use to identify it later as a detection object.
Under these circumstances, a program would change the detection objects if those objects
were accessed by the program. To effectively scan for jamming, the detection process would
first reset all of the detection objects to the proper state and then run the programs to be
scanned. The scanned programs would be run using a script which should cause the programs

1. This is the reason for defining sensitivity to include modification of detection objects by the
detection software. It may be necessary to give the detection objects a plausible history.

12

to set the detection objects to another proper state. If the some of the detection objects are not
in the expected state, then there may be jamming. We call this strategy commingled-object de-
tection because it intersperses detection objects with protected data items.

If detection objects are commingled with application or system data, their contents may be re-
turned as part of a query. To prevent this, the detection process can provide a service or call
that identifies detection objects, such as isDetectionObject(x) so that they need not be dis-
played. We need to restrict this service so that a jammer cannot use it to escape detection.
Since we only try to detect jamming by having the detection process invoke a program against
a predefined script, use of the identification service can be restricted to processes that are not
being invoked to detect jamming. If a process has been invoked for the purpose of scanning it
for jammers, then the detection process can always return false when asked if an object is a
detection object.

Example 5

Suppose we wish to protect an air traffic control system from jamming by using commingled
objects. Our protected system has two databases: aircraft-tracks and flight-plans, as shown
below. Detection objects are shaded; there are two of them in this example:

The detection process could identify the detection objects in flight-plans and flight-tracks as
the fourth object in each table. To check or scan the software that manages flight-plans, the
detection process could execute an update that set flight-plans.eta to 1110 where flight-
plans.flight was QQ99. Before executing this test command via a script, the detection process
would set the fourth record in flight-plans to the known state shown above and also set the
fourth record in aircraft-tracks to the known state shown above. The detection process would
then run the command to update QQ99 in flight-plans. After running the command, it would
check both the fourth record in flight-plans and the fourth record in flight-tracks. If the alti-
tude for QQ99 was 37000 instead of 33000, the detection process would indicate probable jam-
ming to the system security officer. If the jamming software changed the altitude of TW37,
this would not be picked up by the detection process. Also, if the altitude of QQ99 was
changed by a radar sensor update, the detection process would either have to resolve the
change or raise a false alarm. ❏

Commingled-object detection is suitable for protecting data that does not change frequently. If
there are lots of updates taking place, these updates may interfere with the scanning. A detec-
tion object may be changed by a program that is not being scanned. This interference would
require the detection process to log and monitor all updates in order to resolve possible prob-
lems. Commingled-object detection is also less effective against slow jammers that may decide
not to jam on every program invocation.

Flight-Plans

Flight Origin Destination ETA

BA282 LHR IAD 0935
PA73 MSY FRA 1410
TW37 LHR JFK 0940
QQ99 FRA BWI 1105

Aircraft-Tracks

Flight Course Speed Altitude

BA282 290 1250 40000
PA73 075 625 37000
TW37 285 595 34000
QQ99 085 595 33000

13

Quarantine Approaches

Another alternative for preserving sensitivity is to have the distinguishing attribute be im-
plicit and not available to potential jammers. This strategy can be carried out in three ways:
quarantine systems, quarantine subsystems, and quarantine applications. The quarantine sys-
tem approach is the easiest to explain and also the most powerful detection mechanism. A
quarantine system is a copy of the system to be protected. It has all of the programs that run
on the protected system. All of the data in the quarantine system is put there by a script that
leaves the quarantine system in a predetermined state at all times. The script uses exactly
the same data definitions, metadata, class definitions, etc. as the system to be protected. No
users are accessing the quarantine system and it is not connected to any operational system.
The script can be designed to loop continuously so that the quarantine system is always active
and under a plausible load. All of the data in the system can be checked quickly by the back-
ground detection process because the data is in a predetermined state that is known to the de-
tection process. In a quarantine system, the set of protected data items Pj is empty and the set
of potentially modified detection objects Dj has 100% of the data items in J, for any jammer j.
The quarantine system protects any operational system that has precisely the same software
installed. To the extent that the operational system has other software installed, it is unpro-
tected. It might be possible for a jammer to avoid detection by only activating itself on certain
installation specific parameters such as memory size or number of I/O buffers configured. To
allow for this, the script can be run against the quarantine system under an appropriate vari-
ety of installation parameters.

A quarantine system does not have to be at the same location as the system it protects. A com-
plete copy of a new or upgraded system can be set up and run before copies of it are sent out to
operational sites. After the copies of the system are running at the operational site, the quar-
antine system can continue to run in parallel, to protect against jammers that use a delay
mechanism. This approach could also be used to save time, by doing some quarantine process-
ing before operational use, but completing the processing while systems were in operation.
The quarantine system does not have to be as large or complete as the operational systems it
protects. It only needs to be able to run all of the software under the same installation param-
eters as the protected systems.

Example 6

Suppose we set up a quarantine system to protect our air traffic control system. On a separate
hardware platform, we install the air traffic control software, with simulated inputs con-
trolled by the detection process. Our two databases have the same format as before but every
record in the database is a detection object.

Now the detection process can run a command that should set flight-plans.eta to 1110 where
flight-plans.flight was QQ99. There is no need to preset any data and there is no possibility of
interference from an application or system process. Also, the detection process is much sim-
pler because it does not need to distinguish detection objects from protected data items. After

Flight-Plans

Flight Origin Destination ETA

QQ37 LHR JFK 0940
QQ99 FRA BWI 1105

Aircraft-Tracks

Flight Course Speed Altitude

QQ37 285 595 34000
QQ99 085 595 33000

14

the update, the detection process will be able to detect any bogus change to any part of each
table. For instance, if the jammer swaps aircraft-tracks.flight values while it is supposed to be
updating flight-plans, then it will be detected. ❏

Quarantine systems will detect slow jammers, random bit-level barrage jammers, spot jam-
mers, programs that jam by changing data outside their own application, and programs that
jam by deliberately writing incorrect values.

A quarantine subsystem is like a quarantine system that runs on the same hardware as the
operational system it protects. The quarantine subsystem is set up as a protected subsystem
[4] that runs the same software and uses the same data definitions, metadata, etc. as the pro-
tected system. Predefined scripts exercise the software and always leave the data in a prede-
termined state. Once again, the set Pj is empty and the set Dj has 100% of the data items in J,
for any jammer j. In this case, the operational software is protected to the extent that poten-
tial jammers are unable to determine that they are currently executing against the quaran-
tine subsystem. The benefit of a quarantine subsystem is that it allows each site to have
different software installed. The disadvantage is that the features of the operational system
must be extended to provide the quarantine subsystem.

Example 7

Suppose we decide to protect our air traffic control system with a quarantine subsystem. Now
we have four databases, as shown below:

In this case, flight-plans-1 and aircraft-tracks-1 form the quarantine subsystem. The databas-
es flight-plans-2 and aircraft-tracks-2 form the operational air traffic control system. All four
tables are on the same platform. The detection process exercises the operational software
against flight-plans-1 and aircraft-tracks-1. All of the values in flight-plans-1 and aircraft-
tracks-1 are put there by the detection process, so the detection process is as simple as the
quarantine subsystem but able to detect the same wide range of jamming behaviors. ❏

A quarantine application is like a partial quarantine subsystem. Instead of using all of the
programs and data definitions of the operational system, a quarantine application runs a
script against the programs, data definitions, metadata, etc. of a single application.

Flight-Plans-2

Flight Origin Destination ETA

BA282 LHR IAD 0935
PA73 MSY FRA 1410
TW37 LHR JFK 0940

Aircraft-Tracks-2

Flight Course Speed Altitude

BA282 290 1250 40000
PA73 075 625 37000
TW37 285 595 34000

Flight-Plans-1

Flight Origin Destination ETA

QQ37 LHR JFK 0940
QQ99 FRA BWI 1105

Aircraft-Tracks-1

Flight Course Speed Altitude

QQ37 285 595 34000
QQ99 085 595 33000

15

Example 8

Now we will protect our air traffic control system with a quarantine application. In this case
the only detection objects are those that appear to be aircraft-tracks data items:

In this case the detection process only runs commands to modify the table aircraft-tracks-1. It
also can periodically check aircraft-tracks-1 without running a predefined command, in order
to catch jamming against aircraft-tracks via a flight-plans application. This is also a good ex-
ample of how important it is to describe jamming detection in terms of specific jammers. Even
though this quarantine application is based on aircraft-tracks, it will also detect low-level bar-
rage jammers that happen to corrupt part of the high-level aircraft-tracks-1 detection ob-
jects.❏

Detection Objects in the System Life Cycle

The efficacy of a detection object defense is significantly influenced by the way it is included in
the system life cycle. Some parts of a detection object defense should be deferred until late in
the development process, or even until after the system has been installed. Choice of the actu-
al detection objects and the scripts used by the detection process should be deferred until the
system is in its final form and no new code is likely to be introduced. It might be preferable to
have the detection objects and the corresponding scripts developed by the system security of-
ficer, or by a separate development team. The critical point is that the indistinguishability of
the detection objects depends on the assumption that the person designing the jamming soft-
ware does not know the specification of the detection objects, or the scripts that will be run
against them. It should be easier to achieve this if the specific detection object design is done
after the software and firmware for a system has been put in place.

On the other hand, the background detection process should have an open design that is care-
fully integrated with the system it protects. It should be a high-assurance component that is
shown to scan correctly, protect itself from tampering, and protect the identity of the detection
objects and their associated scripts. The ability to protect itself from tampering must be rela-
tively high assurance, since it is intended to function in a an environment where random mod-
ification of data is taking place. The best means for doing this is probably something like an
assured pipeline or extended trusted path. In any case, the background detection process
should be included in the early phases of the system life cycle.

Aircraft-Tracks-2

Flight Course Speed Altitude

BA282 290 1250 40000
PA73 075 625 37000
TW37 285 595 34000

Aircraft-Tracks-1

Flight Course Speed Altitude

QQ37 285 595 34000
QQ99 085 595 33000

Flight-Plans

Flight Origin Destination ETA

BA282 LHR IAD 0935
PA73 MSY FRA 1410
TW37 LHR JFK 0940

16

Scanning Detection Objects

The overall efficiency of a detection-object defense depends on not only careful management of
storage for detection objects but also on low overhead for the scanning process. It should be
possible to compare the actual value of the detection object with the expected value stored by
the background detection process with relatively few machine cycles.

The granularity of the checks is significant. If we are only interested in detecting a change to
our current set of detection objects, then a simple checksum over the entire set via a polyno-
mial code will suffice. We probably want to do more than that. Locating the precise changes
made by a jammer will help us to locate not only the jammer but any possible damage it may
have done to our operational data. Therefore, we want to be able to compare individual detec-
tion objects with their expected values. Unfortunately, to do this we have to store the expected
bit-level representation of each detection object, along with any access structures it may be
embedded in. This problem becomes even harder when we maintain a plausible history for
our detection objects. The size of the store we need to maintain is a function of the length of
the cycle we want our history to run through; if we have d detection objects of size 1 and we
want to change the state of all detection objects twice in our plausible history, then we need a
minimum of 3d units of storage to be able to compare each detection object to its expected val-
ue. We can mitigate this problem by using data compression and off-line storage. We can also
develop a hierarchy of checksums. Each set of detection objects can be partitioned, with check-
sums for each block of the partition. This partitioning can be repeated until the desired gran-
ularity of checking is reached.

Large-granularity detection objects need fewer distinguishing attributes to maintain sensitiv-
ity; sets of detection objects look more like the real thing. This is one of the merits of the quar-
antine systems approach over the commingle-object approach. It is easier to construct an
initial checksum that covers all detection objects.

Scripts that are used for jamming detection must satisfy the same properties as the detection
objects. The commands in the scripts must be indistinguishable from plausible application or
system commands that might be run against the data items to be protected. The scripts must,
for each state transition, leave all of the detection objects in the predefined state expected by
the detection process. Additionally, the commands of the script must not allow other processes
to modify detection objects. Finally, the scripts themselves must be inaccessible to jammers.

Assurance

An effective detection object system should have assurance that it satisfies the two properties
of indistinguishability and sensitivity. It should also have assurance that the protected sub-
system cannot be tampered with or observed. In the latter case, a jammer could inspect the
scripts so as to avoid jamming against the detection system’s scanning. The overall assurance
we have that jamming will be detected is no more than the assurance we have in these two
properties.

Summary

The real-world operations of modern organizations can be disrupted by storage jamming of
their supporting information systems. The object of the jammer is to reduce data quality with-
out being discovered and there are many ways to accomplish this.

Storage jammers can be described in terms of the condition they use to select data items to
jam and the condition they use to chose bogus values. This paper has shown eleven aspects of

17

storage jamming strategy. A system’s vulnerability to storage jamming may be measured in
terms of interceptibility, accessibility, and susceptibility. Our primary concern has been to re-
duce susceptibility. Susceptibility can be reduced by first following certain general system en-
gineering practices and then adopting specific anti-jamming techniques. There are several
security-oriented data integrity approaches that do have anti-jamming properties, but they
all depend on showing partial correctness in all application and system software. In this pa-
per we show how only a small subsystem needs to be trusted in order to provide significant
anti-jamming protection. The most promising mechanism is a background detection process
that can detect jamming in a timely fashion because data has been organized to allow this.
Three possible data organization approaches are specialized data integrity constraints, multi-
process multi-domain transactions, and detection objects.

A detection object is an abstract mechanism that overcomes the difficulty of checking compu-
tation by always remaining in a predictable state. If a detection object is not in its expected
state, then jamming is probably taking place. Detection objects must satisfy two properties:
indistinguishability (jammers cannot distinguish detection objects from other data) and sensi-
tivity (high probability that an unexpected detection object state indicates jamming). Possible
implementations of detection objects include the commingled-object, quarantine system, quar-
antine subsystem, and quarantine application approaches. Design and implementation of de-
tection objects and their associated scripts should be deferred until late in a system’s life
cycle. On the other hand, the design and integration of the background detection process
should be started as early as possible in a system’s life cycle. A detection object system should
be able to quickly scan its detection objects, a function best performed by a checksum comput-
ed over many objects. Additional scanning techniques should be used to allow the detection
object system to pinpoint the jammed data.

It is not clear that our proposed anti-jamming mechanisms would be effective in preventing
fraud. Fraud is most likely to be carried out by causing improper sequences of correct com-
mands, with an eye to moving assets outside the system. These sequences are improper be-
cause the humans initiating them are initiating them with improper input. Furthermore, the
human who wishes to receive the assets diverted by computer fraud does not want degraded
system operation, but rather correct and efficient allocation of resources to the wrong destina-
tion. It may be possible to define certain kinds of fraud that would be detected by our mecha-
nism, but we believe that more specific measures that enforce separation of duties on users or
roles are more appropriate. In many cases, the jamming detection software would not detect
the fraud because the improper sequences of commands might not do anything to a detection
object.

The issues we have discussed here are more complex than we have had room to discuss. Our
future work will address them separately but in more detail. There are three necessary ele-
ments in future work. One is to put on a black hat and learn how systems may be jammed, in
order to help identify the types of threats and the severity of the threats that are likely to be
encountered. The second is to study a variety of techniques to reduce the risks due to jam-
ming. These techniques include the detection objects introduced here, and approaches from
other disciplines: Information dispersal algorithms, predicate detection algorithms, and snap-
shot algorithms for distributed systems. Third, we would like to be able to provide strong jam-
ming protection for systems that otherwise have only weak security features. Many anti-
jamming techniques require a protected subsystem. How does one build a protected sub-

18

system using relatively weak underlying security features? How strong does the protected
subsystem have to be to effectively support a given level of anti-jamming?

References

1. BOEBERT, W.E. and KAIN, R.Y. A practical alternative to hierarchical integrity policies.
In Proceedings of the 8th National Computer Security Conference (Gaithersburg, Mary-
land, 1985). 18-28.

2. CLARK, D.D. and WILSON, D.R. A comparison of commercial and military computer se-
curity policies. In Proceedings of the IEEE Symposium on Security and Privacy (Oakland,
California, April 1987). 184-194.

3. DEFENSE SCIENCE BOARD. Report of the Summer Study Task Force on Information
Architecture for the Battlefield, December 20, 1994.

4. GASSER, M. Building a Secure Computer System. Van Nostrand Reinhold, 1988.

5. GRAY, J. and REUTER, A. Transaction Processing: Concepts and Techniques. Morgan
Kaufman, 1993.

6. HINKE, T. DBMS technology vs. threats. In Database Security: Status and Prospects, ed.
C. Landwehr, North-Holland, Amsterdam, 1988, 57-87.

7. JUNEMAN, R.R. Integrity controls for commercial and military applications, II. In Report
of the Invitational Workshop on Data Integrity (RUTHBERG, Z.G. and POLK, W.T. edi-
tors), NIST, Special Publication 500-168 (September 1989).

8. KATZKE, S.W. and RUTHBERG, Z.G. (editors). Report of the Invitational Workshop on In-
tegrity Policy in Computer Information Systems (WIPICS), NIST, Special Publication 500-
160, (January 1989).

9. RUTHBERG, Z.G. and POLK, W.T. (editors). Report of the Invitational Workshop on Data
Integrity, NIST, Special Publication 500-168 (September 1989).

10. SANDHU, R.S. The schematic protection model: its definition and analysis for acyclic at-
tenuating schemes. JACM 35, 2 (April 1988). 404-432.

11. SANDHU, R.S. Terminology, criteria and system architectures for data integrity. In Re-
port of the Invitational Workshop on Data Integrity (RUTHBERG, Z.G. and POLK, W.T.
editors), NIST, Special Publication 500-168 (September 1989)

12. SANDHU, R.S. Separation of duties in computerized information systems. In Database
Security IV: Status and Prospects (JAJODIA, S. and LANDWEHR. C.E., editors). North-
Holland 1991, 179-189.

13. SANDHU, R.S. and JAJODIA, S. Integrity mechanisms in database management sys-
tems. In Proceedings of the 13th NIST-NCSC National Computer Security Conference
(Washington, DC, October 1990), 526-540.

14. THOMSEN, D.J. and HAIGH, J.T. A comparison of type enforcement and Unix setuid im-
plementation of well-formed transactions. In Proceedings of Sixth Annual Computer Secu-
rity Applications Conference (Tucson, Arizona, December 1990), 304-312.

15. ULLMAN, J.D. Principles of Database and Knowledge-Base Systems, Vol. 1. Computer
Science Press, 1988.

19

16. WISEMAN, S., TERRY, P., WOOD, A., and HARROLD, C. The trusted path between
SMITE and the user. In Proceedings of the IEEE Symposium on Security and Privacy
(Oakland, California, April 1988). 147-155.

17. WISEMAN, S. The control of integrity in databases. In Database Security IV: Status and
Prospects, (JAJODIA, S. and LANDWEHR. C.E., editors).North-Holland 1991, 191-203.

